Pagel

Real-Time Shadows On Complex Objects
August, 2000

Gabor Nagy
Sony Compter Entertainment America
Gabor_Nagy@Playstation.sony.com

This gem presentsan efficient algorithm capable of creating realistic shadowsin real-time
applications.
The algorithm can take advantage of today's fast texture-mapping and 3D transformation hardware.

Introduction

Shadowsareamongthe mostimportantdepth-cuesn humanvision. In computergraphicstheycan
give the 'final touch of realism' to an image.

Without castshadowsgvenwith realisticlighting andtexturingeffects,computergeneratedmages
look artificial, the objects appearing to "float in space" even when they are laying on a surface.
This lack of sensein relative position and depthis especiallyapparentwhen the camerais not
moving (no parallax information).

Until recently,only computationallyexpensivealgorithms,suchasray-tracingand radiosity could
produceaccurateshadowswhereboththe objectscastingthe shadowsandthe onesreceivingthem
are of arbitrary complexity.

The algorithm presentedhere is optimized for real-time applications.It providesa very good
balance between realism and rendering performance while being easily extendable to all situations.

With the always performance-hungrgame programmerin mind, the gem will highlight points
when significant optimization for performance is possible, using a hardware feature.

While someof the basicideasin this gem havebeenaroundfor a while, most papersdescribing
them don't deal with some of the important implementation details.

Light source, Blocker object, Receiver object

Consider the simple example shown on Figure 1.

The torus ("blocker object” or "blocker") blocks someof the light coming from the light source,
casting a shadow on the wall.

The wall receivesthe shadow,or "lack of light", thereforeit is called the "receiverobject", or
"receiver".

Figure 1. Shadow, Receiver, Blocker and Light source
If the light sourceis a point light (infinitely small), the blocker objectwill block the light of that
light source in a well-defined volume, usually referred to ahaddow-volume' (see Figure 2).
A shadow will be created on a receiver object where its surface intersects veltadie-volume,
As Figure 2. shows,the shadow-volume hasa coneor trapezoid-likeshape startingat the blocker
object and continuing to infinity.

While the shadow-volume really startsat the contoursof the blocker object, its cone-like shape
originates from the light source.

Shﬂwvaiume
- T

Figure 2: the "shadow volume"

Let'sexaminehow the crosssectionof the shadowolumechangesswe getfurther from the light
source.
We'll call the point on the blocker'ssurfacethat is nearesto the light source"Pn" and the one

farthest from it:Py.

We can divide the shadow volume into 3 sections:
1) Between the light source ang, P

2) BetweenP and Py

3) FromPy to infinity

Page3

It's easyto seethat in sectionsl) and 3), the cross-sectiorof the shadow-volume will have a
constant shape, but it will increases in size as we get further from the light source.

Becausef the above,unlessone or morereceiverobjectsarein section2), the shadow-volume can
be accuratelymodeledby projectinga 2-dimensionalmaskform a point (the position of the light

source).
Consequently,using the sameprojection,we can"map" this 2D maskon the receiverobjectsto
define the shadowed areas!

This 2D maskis called the "shadow-map"”, and it can be simply derived by drawing the blocker
object's silhouette as seen from the light source.

Figure 3a and 3b: The blocker object as seen from the light source (left) and its silhouette (right)

Notice that we can not seethe shadowcastby the torus on Figure 3a., becausedhe torus exactly

obscures it!
Thisis in fact agoodindicationthatindeed,we canjust usea properlyprojected2D imageor mask
(see Figure 3b.) to define the shadow volume.

This method is usually referred to as "projective shadow-mapping".

The objectives of this gem
To draw shadows using the method introduced above, we need to do the following:

1. Create a shadow-map for each light/blocker object pair
2. Calculate theshadow-map (texture) coordinates to use on the receiver object's vertices
3. Render the receiver objects with gadow-map applied as a 2D texture

1. Creating the shadow-map

We will set up a perspective projection originating at the light source.
This will projectthe blocker objectonto a virtual screen-plane betweenthe light sourceand the
blocker object, yielding thehadow-map as seen on Figure 4.

Paged

Sh@wvé!ume
-

r)O*
X

DR

Shadowmap

Figure 4: theshadow-map projection

1.1. The light coordinate-system

First, we will define a new coordinatesystemwith its origin at the light sourceandits Z axis
pointing at the blocker object.

The Z axis of this coordinate-systerwill determinethe centerline of the perspectiveprojection,
while its XY-plane will definethe the orientationof the screen-planeve will projectthe shadow-

map on.
If we transformthe blockerobjectinto this light coordinate-systemye can easily projectit onto

this plane.

Figure 5: thdight coordinate-system

To define an arbitrary, non-scalingcoordinate-systenwe needto know the position of its origin
and its orientation.

We already know the position of the origin: it's the position of our light source.

We will describe the orientation of the light coordinate system with the direction of its 3 axes:
Xiight Yiight andZjgp , all 3D unit-vectors invorld coordinates.

Pageb

1.1.1. Finding Z;jgp

Starting with theZ;p axis, we can easily fink;g andY,;gp.
Zjigne Will be a direction vector that starts from the light source and points at the blocker object.

Let'sassumehatthe blockerobjectis polygonal,andwe havean array of all the polygonvertices
that are used in rendering this object.

Now we havea setof "target"pointsin 3D space(the verticesof the blocker)andanotherpoint: the
position of the light source.

A fast and efficient way of getting "a good" direction vector is to average the vectors
starting from the light source and pointing to each vertex.

We will call it the Mean Direction Vector, or MDYV

NV
- Z (Vi_PIight)
MDV =%

N

\

Where N, is the number of vertices considered in the blocker and Py is the position of the
light source.
Normalizing MDV (making its length 1.0) will yield Zlight:

-

Lo = |MI.?V|

-

Optimization tip #1
Since we will normalize MDYV anyway, we don't have to divide the sum of light-to-vertex
vectors by Nv, saving one divide operation.

We can also calculate Pjy,*Nv in advance and avoid the "- Pignt" in the vertex loop,
because:

N N

Z(Vi_Plight) Zvu

i=1 i=1

N—V=_Plight NVTV

Here is the C code to get Zj.,:

Page 6

t ypedef struct
E3dType XY, Z,

short Fl ags;
} E3dVertex;

voi d Shadowwvatri x(Matrix LBl ockerLocal ToWwr| dvat ri x)

{
unsi gned | ong LVn, LVC, LN, LC;
fl oat Mk, My, Mz, LPlightX, LPlightY, LPlightZ,
f1 oat LMDVX, LNMDVY, LMDVZ, // Mean Direction Vector
fl oat LZlight X, LZlightY, LZlightZ, /1 Zlight vector X, Y and Z

/1 Initialize Mean Direction Vector to (0.0, 0.0, 0.0)
/1
LMDVX = LMDVY = LMDVZ = 0. 0;

Lvertex = LMesh->Verti ces;

/'l Average vertex-to-light vectors

/1

LVn = LMesh->Nuntf Verti ces;

LMDVX = LPIightX * LVn;

LMDVY = LPlightY * LVn;

LMDVZ = LPlightZ * LVn;

for(LVC = 0;L VC < LVn; LVC++, LVertex++)
{

Mk=LVert ex->X; My=LVertex->Y, M=LVertex->Z
E3dM Mat ri xTr ansf or nBx4(LBl ocker Local ToWwor | dMatri x, LX, LY, LZ);

LMDVX -= LX;
LMDVY -= LY,
LMDVZ -= LZ;
}
/1 Normalize Mean Direction Vector (MV)
/1
LVF = sqrt (LMDVX* LMDVX+LNDVY* LNMDVY+LNMDVZ* LMDVZ) ;
LVF = 1.0 / LVF; /1 W can save 2 divisions by doing this in advance. ..
LZlight X = LMDVX * LVF;
LZlightY = LMDVY * LVF;
LZlightZ = LMDVZ * LVF;
}

E3dM Mat ri xTr ansf or m8x4 is a macro function that transforms a 3D vector given by
Mx, My and Mz with a 3x4 matrix (actually the top-left part of a 4x4 matrix).

For the rest of the source code, please refer to the example program on the companion CD-ROM.

1.1.2. Finding Xjignt and Yjigny

The projection to map the shadow-map texture on the receiver object will be the same as the
one used to draw the shadow-map, therefore the orientation of the shadow-map (rotation

Page/

around Zj;.;,) does not matter. In other words: rotating the XY-light plane around Zj;¢,; will

not make any difference.
This means that for the X;.,, axis, we can use any unit vector that is perpendicular to Z,

(see Figure 5.).

We can get a vector like that as the cross-product of Zj;., and any other vector that is not
parallel with Ziight
Let's call this other "helper" vector V.

We know that at leasttwo of the X, Y or Z axesof the world coordinatesystemwill meetthis
criteria, sofor simplicity, we will usea unit vectorV(x,y,z) with onecoordinatebeing1, the others
0.

A vector'slargestcomponen(X, Y or Z) will determinet's "dominant"direction,thereforeto geta
vectorthat points“far enoughaway" from Z;4,,, we will setthe componenbf V to 1 thathasthe

smallestabsolute value id;;g,.

This will eliminate"float"-precisionworrieswhen performinga vector cross-producbperationon
Zjigry aNAV.

For example:
if Z;4=(0.381, 0.889, 0.254Y, will be: (0.0, 0.0, 1.0) =Zyyig

if Z;4,=(-0.889, 0.254, 0.381Y, will be: (0.0, 1.0, 0.0) =Yyorig
and so on.

The cross-product &, andV will yield a third vector that is perpendicular to both of them.
After normalization, this will yield;q, the X axis of the light coordinate system:

- -

_ Lygu XV

light =7 =+ =~

-

With Xjgre andZyigy given, theYigy axis is just another cross-product away:

- - -

-

Note that this will give us a unit vector, so we don't have to norméjige because:

‘ ‘ and | ‘ and ==> |

a s . -

With Xjight: Yiight @and Zygre and Py, known, we can create the matrix that will transform a
point from world coordinates to light coordinates by simply filling in these values:

Page 8

- - -

M WorldToLight =

- _rf \s - _f N7/ - _r — ~ A

Thisiswhy weused Xjigp, Yign: @nd Zjjgpy to describe the orientation of the light coordinate-system.

The next step is to pre-multiply this matrix with the blocker object's local-to-world matrix.
This will give us the local-to-light matrix for the blocker.

M BlockerLocal ToLight =M BlockerLocal Toworld *M WorldToLight

As the name implies, the above matrix will transform a point defined in the local
coordinate system of the blocker into the light coordinate-system.

Such transformed X and Y coordinates will define the parallel or orthogonal projection of the
blocker object onto the shadow-map plane (which is parallel with the XY-plane of the light
coordinate system).

1.2.The perspective projection

To make this a perspective projection, we will need a field-of-view, or the X and Y
"projection ratios".
We can find the projection ratios (Ry and Ry) for each vertex of the blocker object by

transforming the vertex with MpjgckerLocaToLigt and dividing the resulting X and Y
coordinates by the resulting Z coordinate (see Figure 6.).

Vix,

Vix,
~~...____ Blocker &,/sz/A Vit
VtXY < Q

Vo

Zlig‘lt }

R

Xiig

Figure 6.: Projection ratios

1.2.1. Adaptive projection

We could use a single ratio for the projection, but that would lead to the blocker object's
silhouette changing size in the shadow-map if we move the light source closer or farther

Page 9

away from it.

The same problem would arise if we change the size of the blocker or if the light source
"looks at it" from a different angle.

This could result in a tiny image of the blocker in the middle of the shadow-map, or an over-
sized image that doesn't fit in the shadow-map (see Figure 7.).

In the first case (Figure 7a.) we get a low resolution shadow-map with bad artifacts on the
receiver objects. This would be a wasting of shadow-map memory.

The latter (Figure 7b.) will cause incorrect shadow shapes and possibly "shadow-leaking"
(see section 2. texture-clamping).

In this case the shadow-map memory would not be enough.

4

y

Figure 7.: Non-adaptive (7a and 7b) and adaptive blocker projection (7c)

Instead of one fixed value, we will use the largest Ry (Rx;,,) as the horizontal ratio for the
projection, while the largest Ry, (Ry,,,,) Will give the vertical ratio.

This makes the perspective projection adaptive for both the X and Y direction, meaning that
the blocker's silhouette will always properly fill the shadow-map, making the best use of all
the pixels in it.

This is very important, as we want to use the minimum necessary texture size, because:

* Texture memory is always a scarce resource and the maximum texture size might be
limited by other factors.

* On some hardware, after drawing the shadow-map image, we have to transfer it from the
frame-buffer to a dedicated texture memory and the speed of this transfer will be
limited by bus and memory bandwidth.

Now we can fill out a standard perspective projection matrix for the blocker object:

Pagel0

* SMapWidth 0 0 0
Xmax
0 * SMlapHeight 0 0
M — Ymax

BlockerProjection — Z. +Z

0 0 far near —
Znear - Zfar

Z..Z

0 0 p_farTnear
Znear - Zfar

Where: SMapWidth and SMapHeight are the horizontal and vertical resolution of the
shadow-map in pixels.

Zyeqr and Zg, are the distances of the "Near" and the "Far" clipping planes of the viewing
frustum from the light source.

Pre-multiplying this matrix with Mpjockerrocartorigns Will yield the 4x4 matrix that will
perform a perspective projection from world coordinates to shadow-map space:

MBlockerLoculToShudowMup = MBlockerLoculToLight *MBlockerProjection

In OpenGL, we can simply load an identity matrix into the PROJECTION matrix and
MBjockerLocalToShadowMap INto the MODELVIEW matrix and start drawing the shadow-map
using the blocker's local coordinates.

Optimization tip #2:
To decrease¢he time it takesto createthe shadow-map, we canuse2 or 3 differentversionsof the
blocker object geometry for the different rendering stages:

* To setupthe shadow-map projection:blockergeometrywith a minimumnumberof verticesWe
won't need connectivity data (e.g.: polygons) or normal-vectors here.
All that mattersis that no polygonsof the blockershouldbe outsidethe projectedshapeof this
volume, no matterthe anglewe look at it from as that would draw on the 1-pixel edgeof the
shadow-map, ruining texture-clamping and causing "shadow leaking".
We might evenusea "good" boundingvolume suchasthe blocker'sbounding-box.This could
eliminatethe needto computeMDV (just usea vectorfrom the light sourceto the centerof the
bounding box).

* To draw the shadow-map: blockergeometrywith minimum or no surface-detail, but necessary
contour-detail .

* And of course,to draw he blockerobject,we needthe geometrywith all the surface-detail and
surface properties (e.g.: normal vectors) to make the object look "spiffy".

Page 11

Optimization tip #3:

If the rendering engine is programmable, we can use a very simple (and possibly fast)
renderer code to draw the shadow-map:

* No lighting needed, a simple "flat-color" renderer will do.

* No clipping needed (the blocker's image will always fit in the shadow-map!).

* No depth-testing (Z-buffering) needed.

2. Projecting the shadow-map on a receiver object

Now we have a shadow-map associated with a blocker object and a light source. This shadow-map
can be projected on any number of receiver objects, and because it will be applied as a texture, the
receiver objects can have any complex shape (curves, holes, ridges etc.).

As mentioned before, we will use the same projection to project the shadow-map on a receiver as
we used to draw the shadow-map.

The only differences are the image offset and scaling factors, because we will use the 0.0...1.0
coordinate range as opposed to the 0...SMapWidth or 0...SVlapHeight ranges.

Thisisthe appropriate projection matrix:

0.5
0 0 0
RXmax
0 0.5 0 0
M - RYmax
ReceiverProjection = Z. +Z
-05 -05 =E—= 1
Znear_zfar
ZinZ
0 0 2 far “near
Znear_zfar

2.1. Texture coordinates and shadow-map coordinates

The shadow-map will be an image with a finite number of pixels and integer coordinate
values, for example: 256x256.

However, texture coordinates are usually normalized floating point values, meaning that
the range 0.0...1.0 will refer to pixel coordinates 0..255 horizontally and 0..255 vertically.

So what happens outside the 0.0...1.0 range?
We have to make sure that the texture pixel (texel) used on the receiver will be the color
used for "no shadow" (black on Figure 7.).

On most 3D hardware with texture-mapping, you have at least 2 options:
* Texture repeat: outside the 0.0...1.0 range, the texture is simply repeated, so for example

Pagel?

in the -1.0...0.0 range of texture coordinates will produce the same image as the 0.0...1.0
range.

* Texture clamping: the pixel on the edge of the texture image is repeated everywhere
outside the 0.0...1.0 range, or you can define a specific "border color" that will be
repeated outside the normal range.

It's easy to see that we will have to use texture clamping, because we want a uniform effect
on the receiver object outside the 0.0...1.0 texture coordinate range.

Texture-clamping will effectively save us the testing of the receiver objects for intersection
with the shadow-volume.

Because not all 3D hardware and API provide a separate texture border color, we have to
leave a 1 pixel thick border on the shadow-map.
To make sure that nothing is drawn in this border when rendering the blocker object, we
have to slightly decrease the projection ratios.

3. Rendering the receiver objects

Thereare many different ways to draw the object receivingthe shadow.The two mostcommon
methods are:

* Single-pass rendering:
If thereis no othertextureonthe receiverobject,we candrawit in onepassapplyingablackon
white shadow-map as a texture and using the light source to illuminate the object.

* Multi-pass rendering with subtractive blending:
If areceiveralreadyhasa textureon it andthe hardwaredoesn'tsupportmulti-texturing,we will
need multiple passes:
- Draw receiver normally.
- Draw shadow-pass with subtractive pixel-blending, using a white on #lad&w-map.
This will successively decrease the surface color intensity where there is a shadow cast.
Use "GREATER-OR-EQUAL" or "LESS-THAN-OR-EQUAL" Z comparison functions for

drawing multiple passes. This way if you pass the same primitive, it will overwrite or blend

the current pass with the previous one.

For a descriptionof pixel-blending,pleasereferto the "Convincing GlassFor Games"Gemin this
book.

4. Extensions and enhancements to the basic algorithm

Page 13

Simplicity and high performance usually comes at a price.

The presented projective shadow-mapping algorithm is no exception from that rule: it has
some limitations.

However, most of these limitations are very easy to overcome and the algorithm can be extended to
handle most cases.

4.1. Back-face shadow elimination

One side-effect of projective shadow-mapping is that it will normally map a shadow on the side of
the receiver facing away from the light source.

We can correct this by either:
1. determining if atriangle is facing away from the light source and if it is, we can assign out-of-
range shadow-map coordinates for all of its vertices (the example code on the CD does this).

2. setting up the rendering of the receiver in such away that it (the receiver) is completely black on
the side facing away from the light source (no ambient lighting)
Thisisthe proper method, because it is closer to what happens in reality.
However if there is more than 1 light source in the scene, the "back" face of the blocker can be it
by another one.
In this case, we will have to use multi-pass rendering and add the ambient light and light coming
from other light sources in separate drawing passes.

4.2. Receiver is behind light source (light is between blocker and receiver)

You have to explicitly check for this case and not map a shadow on the receiver object.

4.3. Mutliple light sources, one blocker, one receiver

This case needs the use of multi-pass rendering with subtractive blending on the receiver
object.

Use areceiver rendering pass for each shadow-map.

The multiple passes will successively decrease the intensity (RGB values) in the shadowed areas on
the surface of the receiver, making even the shadow intersections look correct.

4.4. One light source, mutliple blockers, one receiver

This case also needs multiple passes. There is one difference though: the cumulative effect
of shadow intersections is incorrect, because the two blockers block the light of the same
light source.

Use the stencil-buffer to not draw in the screen area where there is already a shadow
drawn.

Pagel4

References
James Blinn. Me and My (Fake) Shadow. Jim Blinns Corner, pages
53-61, January 1988.

Foley, et al. Computer Graphics Principles and Practice pages
745-753, Addison Wesley, Second Edition 1990.

David Blythe, Tom McReynolds. Programming with OpenGL.:
Advanced Rendering. SIGGRAPH '96 Course Notes. August 1996.

Paul Heckbert, Michael Herf. Fast Soft Shadows. SIGGRAPH '96
Visual Proceedings, page 145. Aug. 1996.

Paul Heckbert, Michael Herf. Simulating Soft Shadows with
Graphics Hardware. CMU-CS-97-104, CS Dept, Carnegie Mellon
U., Jan. 1997.

