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This gem presentsan efficient algorithm capableof creating realistic shadowsin real-time
applications. 
The algorithm can take advantage of today's fast texture-mapping and 3D transformation hardware.

Introduction

Shadowsareamongthemostimportantdepth-cuesin humanvision. In computergraphics,theycan
give the 'final touch of realism' to an image.
Without castshadows,evenwith realisticlighting andtexturingeffects,computergeneratedimages
look artificial, the objects appearing to "float in space" even when they are laying on a surface.
This lack of sensein relative position and depth is especiallyapparentwhen the camerais not
moving (no parallax information).

Until recently,only computationallyexpensivealgorithms,suchasray-tracingandradiositycould
produceaccurateshadows,whereboththeobjectscastingtheshadowsandtheonesreceivingthem
are of arbitrary complexity.

The algorithm presentedhere is optimized for real-time applications.It provides a very good
balance between realism and rendering performance while being easily extendable to all situations.

With the always performance-hungrygameprogrammerin mind, the gem will highlight points
when significant optimization for performance is possible, using a hardware feature.

While someof the basicideasin this gemhavebeenaroundfor a while, most papersdescribing
them don't deal with some of the important implementation details.

Light source, Blocker object, Receiver object

Consider the simple example shown on Figure 1.

The torus ("blocker object" or "blocker") blocks someof the light coming from the light source,
casting a shadow on the wall.

The wall receivesthe shadow,or "lack of light", thereforeit is called the "receiverobject", or
"receiver".
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Figure 1: Shadow, Receiver, Blocker and Light source

If the light sourceis a point light (infinitely small), the blockerobjectwill block the light of that
light source in a well-defined volume, usually referred to as a "shadow-volume" (see Figure 2).

A shadow will be created on a receiver object where its surface intersects with the shadow-volume.

As Figure2. shows,the shadow-volume hasa coneor trapezoid-likeshape,startingat the blocker
object and continuing to infinity.
While the shadow-volume really startsat the contoursof the blocker object, its cone-like shape
originates from the light source.

Figure 2: the "shadow volume"

Let'sexaminehow thecrosssectionof theshadowvolumechangesaswe getfurther from the light
source.
We'll call the point on the blocker'ssurfacethat is nearestto the light source"Pnl" and the one
farthest from it: Pfl.

We can divide the shadow volume into 3 sections:
1) Between the light source and Pnl
2) Between Pnl and  Pfl

3) From Pfl to infinity
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It's easyto seethat in sections1) and 3), the cross-sectionof the shadow-volume will have a
constant shape, but it will increases in size as we get further from the light source.

Becauseof theabove,unlessoneor morereceiverobjectsarein section2), theshadow-volume can
be accuratelymodeledby projectinga 2-dimensionalmaskform a point (the positionof the light
source).
Consequently,using the sameprojection,we can "map" this 2D maskon the receiverobjectsto
define the shadowed areas!

This 2D maskis called the "shadow-map", and it can be simply derivedby drawing the blocker
object's silhouette as seen from the light source.

Figure 3a and 3b: The blocker object as seen from the light source (left) and its silhouette (right)

Notice that we can not seethe shadowcastby the torus on Figure 3a.,becausethe torusexactly
obscures it!
This is in fact a goodindicationthat indeed,we canjust usea properlyprojected2D imageor mask
(see Figure 3b.) to define the shadow volume.

This method is usually referred to as "projective shadow-mapping".

The objectives of this gem

To draw shadows using the method introduced above, we need to do the following:

1. Create a shadow-map for each light/blocker object pair
2. Calculate the shadow-map (texture) coordinates to use on the receiver object's vertices
3. Render the receiver objects with the shadow-map applied as a 2D texture

1. Creating the shadow-map
 

We will set up a perspective projection originating at the light source.
This will project the blocker object onto a virtual screen-plane betweenthe light sourceand the
blocker object, yielding the shadow-map as seen on Figure 4.
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Figure 4: the shadow-map projection

1.1. The light coordinate-system
 

First, we will define a new coordinatesystemwith its origin at the light sourceand its Z axis
pointing at the blocker object.
The Z axis of this coordinate-systemwill determinethe centerline of the perspectiveprojection,
while its XY-plane will definethe the orientationof the screen-planewe will project the shadow-
map on.
If we transformthe blockerobject into this light coordinate-system,we caneasilyproject it onto
this plane.

Figure 5: the light coordinate-system

To definean arbitrary,non-scalingcoordinate-system,we needto know the positionof its origin
and its orientation.

We already know the position of the origin: it's the position of our light source.

We will describe the orientation of the light coordinate system with the direction of its 3 axes:
Xlight, Ylight and Zlight , all 3D unit-vectors in world coordinates.
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1.1.1. Finding Zlight
 

Starting with the Zlight axis, we can easily find Xlight and Ylight.

Zlight will be a direction vector that starts from the light source and points at the blocker object.

Let'sassumethat the blockerobject is polygonal,andwe havean arrayof all thepolygonvertices
that are used in rendering this object.
Now we havea setof "target"pointsin 3D space(theverticesof theblocker)andanotherpoint: the
position of the light source.

A fast and efficient way of getting "a good" direction vector is to average the vectors
starting from the light source and pointing to each vertex.

We will call it the Mean Direction Vector, or MDV:

�
MDV �

�
i � 1

N v

V i � P light

N v

Where Nv is the number of vertices considered in the blocker and Plight is the position of the
light source.

Normalizing MDV (making its length 1.0) will yield Zlight:

�
Z light

�
�

MDV�
MDV

Optimization tip #1
Since we will normalize MDV anyway, we don't have to divide the sum of light-to-vertex
vectors by Nv, saving one divide operation.
We can also calculate Plight*Nv in advance and avoid the "- Plight" in the vertex loop,
because:

�
i � 1

N v

V i � P light

N v

� � P light N v

�
i � 1

N v

V i

N v

      

Here is the C code to get Zlight:
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typedef struct
{
 E3dType X,Y,Z;
 short Flags;
} E3dVertex;

void ShadowMatrix(Matrix LBlockerLocalToWorldMatrix)
{
 unsigned long LVn, LVC, LN, LC;
 float Mx, My, Mz, LPlightX, LPlightY, LPlightZ,
 float LMDVX, LMDVY, LMDVZ, // Mean Direction Vector
 float LZlightX, LZlightY, LZlightZ, // Zlight vector X, Y and Z

// Initialize Mean Direction Vector to (0.0, 0.0, 0.0)
//
 LMDVX = LMDVY = LMDVZ = 0.0;

 Lvertex = LMesh->Vertices;

// Average vertex-to-light vectors
//
 LVn = LMesh->NumOfVertices;

 LMDVX = LPlightX * LVn;
 LMDVY = LPlightY * LVn;
 LMDVZ = LPlightZ * LVn;

 for(LVC = 0;L VC < LVn; LVC++, LVertex++)
 {
  Mx=LVertex->X; My=LVertex->Y; Mz=LVertex->Z;
  E3dM_MatrixTransform3x4(LBlockerLocalToWorldMatrix, LX, LY, LZ);

  LMDVX -= LX;
  LMDVY -= LY;
  LMDVZ -= LZ;
 }

// Normalize Mean Direction Vector (MDV)
//
 LVF = sqrt(LMDVX*LMDVX+LMDVY*LMDVY+LMDVZ*LMDVZ);
 LVF = 1.0 / LVF; // We can save 2 divisions by doing this in advance...

 LZlightX = LMDVX * LVF;
 LZlightY = LMDVY * LVF;
 LZlightZ = LMDVZ * LVF;

.

.
}

E3dM_MatrixTransform3x4 is a macro function that transforms a 3D vector given by
Mx, My and Mz with a 3x4 matrix (actually the top-left part of a 4x4 matrix).

For the rest of the source code, please refer to the example program on the companion CD-ROM.

1.1.2. Finding Xlight and Ylight

The projection to map the shadow-map texture on the receiver object will be the same as the
one used to draw the shadow-map, therefore the orientation of the shadow-map (rotation
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around Zlight) does not matter. In other words: rotating the XY-light plane around Zlight will
not make any difference.
This means that for the Xlight axis, we can use any unit vector that is perpendicular to Zlight
(see Figure 5.).

We can get a vector like that as the cross-product of Zlight and any other vector that is not
parallel with Zlight.
Let's call this other "helper" vector V.

We know that at leasttwo of the X, Y or Z axesof the world coordinatesystemwill meet this
criteria,so for simplicity, we will usea unit vectorV(x,y,z) with onecoordinatebeing1, theothers
0.

A vector'slargestcomponent(X, Y or Z) will determineit's "dominant"direction,thereforeto geta
vectorthat points"far enoughaway" from Zlight,, we will set the componentof V to 1 that hasthe
smallest absolute value in Zlight.

This will eliminate"float"-precisionworrieswhenperforminga vectorcross-productoperationon
Zlight and V.

For example:
 if Zlight=(0.381, 0.889, 0.254), V will be: (0.0, 0.0, 1.0) =  Zworld 

 if Zlight=(-0.889, 0.254, 0.381), V will be: (0.0, 1.0, 0.0) =  Yworld

 and so on.

The cross-product of Zlight and V will yield a third vector that is perpendicular to both of them.
After normalization, this will yield Xlight , the X axis of the light coordinate system:

�
X light

�
�

Z light x

�
V�

Z light x

�
V

With Xlight and Zlight given, the Ylight axis is just another cross-product away:

�
Y light

�
X light x

�
Z light

Note that this will give us a unit vector, so we don't have to normalize Ylight, because:

�
X light 1

and
�

Z light 1
and 

�
X light �

�
Z light

==>
�

X light x

�
Z light 1

With Xlight, Ylight andZlight and Plight known, we can create the matrix that will transform a
point from world coordinates to light coordinates by simply filling in these values:
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M WorldToLight
�

X of

�
X light X of

�
Y light X of

�
Z light 0.0

Y of

�
X light Y of

�
Y light Y of

�
Z light 0.0

Z of

�
X light Z of

�
Y light Z of

�
Z light 0.0

X of P light Y of P light Z of P light 1.0
This is why we used  Xlight, Ylight and Zlight to describe the orientation of the light coordinate-system.

The next step is to pre-multiply this matrix with the blocker object's local-to-world matrix.
This will give us the local-to-light matrix for the blocker.

M BlockerLocalToLight
� M BlockerLocalToWorld � M WorldToLight

As the name implies, the above matrix will transform a point defined in the local
coordinate system of the blocker into the light coordinate-system.

Such transformed X and Y coordinates will define the parallel or orthogonal projection of the
blocker object onto the shadow-map plane (which is parallel with the XY-plane of the light
coordinate system).

1.2.The perspective projection
 

To make this a perspective projection, we will need a field-of-view, or the X and Y
"projection ratios".
We can find the projection ratios (RX and RY) for each vertex of the blocker object by
transforming the vertex with MBlockerLocalToLight and dividing the resulting X and Y
coordinates by the resulting Z coordinate (see Figure 6.).

RY
� VtxY

VtxZ

Figure 6.: Projection ratios

1.2.1. Adaptive projection
 

We could use a single ratio for the projection, but that would lead to the blocker object's
silhouette changing size in the shadow-map if we move the light source closer or farther

VtxZ

VtxY

ZZ lightlight

YY lightlight

XX lightlight

B locker
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away from it.
The same problem would arise if we change the size of the blocker or if the light source
"looks at it" from a different angle.
This could result in a tiny image of the blocker in the middle of the shadow-map, or an over-	 
 � � 
�
 ��� � � � � � � 
 � � 	 � � � � 
 � 
 ��� � � shadow-map (see Figure 7.).
In the first case (Figure 7a.) we get a low resolution shadow-map with bad artifacts on the
receiver objects. This would be a wasting of shadow-map memory.
The latter (Figure 7b.) will cause incorrect shadow shapes and possibly "shadow-leaking"
(see section 2. texture-clamping).
In this case the shadow-map memory would not be enough.

Figure 7.: Non-adaptive (7a and 7b) and adaptive blocker projection (7c)

Instead of one fixed value, we will use the largest RX (RXmax) as the horizontal ratio for the
projection, while the largest RY, (RYmax) will give the vertical ratio.
This makes the perspective projection adaptive for both the X and Y direction, meaning that
the � � � � � � � � 	 silhouette will always properly fill the shadow-map, making the best use of all
the pixels in it.

This is very important, as we want to use the minimum necessary texture size, because:�
Texture memory is always a scarce resource and the maximum texture size might be
limited by other factors.�
On some hardware, after drawing the shadow-map image, we have to transfer it from the
frame-buffer to a dedicated texture memory and the speed of this transfer will be
limited by bus and memory bandwidth.

Now we can fill out a standard perspective projection matrix for the blocker object:
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MBlockerProjection  

1
R Xmax ! SMapWidth 0 0 0

0
1

RYmax ! SMapHeight 0 0

0 0
Z far " Znear

Znear # Z far
# 1

0 0 2
Z far Znear

Znear # Z far

0

Where: SMapWidth and SMapHeight are the horizontal and vertical resolution of the
shadow-map in pixels.
Znear and Zfar are the distances of the "Near" and the "Far" clipping planes of the viewing
frustum from the light source.

Pre-multiplying this matrix with MBlockerLocalToLight will yield the 4x4 matrix that will
perform a perspective projection from world coordinates to shadow-map space:

MBlockerLocalToShadowMap = MBlockerLocalToLight * MBlockerProjection

In OpenGL, we can simply load an identity matrix into the PROJECTION matrix and
MBlockerLocalToShadowMap into the MODELVIEW matrix and start drawing the shadow-map$ 	 
 � �%� � � � � � � � � � � 	 � � � � � � � � � 
 
 � � � � 	 &

Optimization tip #2:
To decreasethe time it takesto createthe shadow-map, we canuse2 or 3 differentversionsof the
blocker object geometry for the different rendering stages:

' To setup theshadow-map projection:blockergeometrywith a minimumnumberof vertices.We
won't need connectivity data (e.g.: polygons) or normal-vectors here.
All that mattersis that no polygonsof the blockershouldbe outsidethe projectedshapeof this
volume,no matterthe anglewe look at it from as that would draw on the 1-pixel edgeof the
shadow-map, ruining texture-clamping and causing "shadow leaking".
We might evenusea "good" boundingvolumesuchas the blocker'sbounding-box.This could
eliminatethe needto computeMDV (just usea vectorfrom the light sourceto thecenterof the
bounding box).

' To draw the shadow-map: blockergeometrywith minimum or no surface-detail, but necessary
contour-detail.

' And of course,to draw heblockerobject,we needthe geometrywith all the surface-detail and
surface properties (e.g.: normal vectors) to make the object look "spiffy".
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Optimization tip #3:
If the rendering engine is programmable, we can use a very simple (and possibly fast)
renderer code to draw the shadow-map:' No lighting needed, a simple "flat-color" renderer will do.')( �*� � 
 + + 
 � �%� � � 
 � 
-, � � � � � � � � � � � 	 
 �-� � �/.*
 � � � � .0� 1 	 � 
 � 
 ��� � � shadow-map!).' No depth-testing (Z-buffering) needed.

2. Projecting the shadow-map on a receiver object
 

Now we have a shadow-map associated with a blocker object and a light source. This shadow-map
can be projected on any number of receiver objects, and because it will be applied as a texture, the
receiver objects can have any complex shape (curves, holes, ridges etc.).

As mentioned before, we will use the same projection to project the shadow-map on a receiver as
we used to draw the shadow-map.
The only differences are the image offset and scaling factors, because we will use the 0.0...1.0
coordinate range as opposed to the 0...SMapWidth or 0...SMapHeight ranges.

This is the appropriate projection matrix:

M ReceiverProjection  

0.5
R Xmax

0 0 0

0
0.5

RYmax

0 0

2 0.5 2 0.5
Z far 3 Znear

Znear
2 Z far

2 1

0 0 2
Z far Znear

Znear
2 Z far

0

2.1. Texture coordinates and shadow-map coordinates

The shadow-map will be an image with a finite number of pixels and integer coordinate
values, for example: 256x256.
However, texture coordinates are usually normalized floating point values, meaning that
the range 0.0...1.0 will refer to pixel coordinates 0..255 horizontally and 0..255 vertically.

So what happens outside the 0.0...1.0 range?
We have to make sure that the texture pixel (texel) used on the receiver will be the color
used for "no shadow" (black on Figure 7.).

On most 3D hardware with texture-mapping, you have at least 2 options:' Texture repeat: outside the 0.0...1.0 range, the texture is simply repeated, so for example
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in the -1.0...0.0 range of texture coordinates will produce the same image as the 0.0...1.0
range.�
Texture clamping: the pixel on the edge of the texture image is repeated everywhere
outside the 0.0...1.0 range, or you can define a specific "border color" that will be
repeated outside the normal range.

4 � � 	 easy to see that we will have to use texture clamping, because we want a uniform effect
on the receiver object outside the 0.0...1.0 texture coordinate range.

Texture-clamping will effectively save us the testing of the receiver objects for intersection
with the shadow-volume.

Because not all 3D hardware and API provide a separate texture border color, we have to
leave a 1 pixel thick border on the shadow-map.
To make sure that nothing is drawn in this border when rendering the blocker object, we
have to slightly decrease the projection ratios.

3. Rendering the receiver objects
 

Therearemany different ways to draw the object receivingthe shadow.The two most common
methods are:�

Single-pass rendering:
If thereis no othertextureon thereceiverobject,we candrawit in onepass,applyinga blackon
white shadow-map as a texture and using the light source to illuminate the object.�
Multi-pass rendering with subtractive blending:
If a receiveralreadyhasa textureon it andthehardwaredoesn'tsupportmulti-texturing,we will
need multiple passes:
- Draw receiver normally.
- Draw shadow-pass with subtractive pixel-blending, using a white on black shadow-map.
   This will successively decrease the surface color intensity where there is a shadow cast.
   Use "GREATER-OR-EQUAL" or "LESS-THAN-OR-EQUAL" Z comparison functions for 
   drawing multiple passes. This way if you pass the same primitive, it will overwrite or blend
   the current pass with the previous one.

For a descriptionof pixel-blending,pleaserefer to the "ConvincingGlassFor Games"Gemin this
book.

4. Extensions and enhancements to the basic algorithm
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Simplicity and high performance usually comes at a price.
The presented projective shadow-mapping algorithm is no exception from that rule: it has
some limitations.
However, most of these limitations are very easy to overcome and the algorithm can be extended to
handle most cases.

4.1. Back-face shadow elimination
 

One side-effect of projective shadow-mapping is that it will normally map a shadow on the side of
the receiver facing away from the light source.

We can correct this by either:
1. determining if a triangle is facing away from the light source and if it is, we can assign out-of-

range shadow-map coordinates for all of its vertices (the example code on the CD does this).

2. setting up the rendering of the receiver in such a way that it (the receiver) is completely black on
the side facing away from the light source (no ambient lighting)
This is the proper method, because it is closer to what happens in reality.
However if there is more than 1 light source in the scene, the "back" face of the blocker can be lit
by another one.
In this case, we will have to use multi-pass rendering and add the ambient light and light coming
from other light sources in separate drawing passes.

4.2. Receiver is behind light source (light is between blocker and receiver)
 

You have to explicitly check for this case and not map a shadow on the receiver object.

4.3. Mutliple light sources, one blocker, one receiver
 

This case needs the use of multi-pass rendering with subtractive blending on the receiver
object.
Use a receiver rendering pass for each shadow-map.
The multiple passes will successively decrease the intensity (RGB values) in the shadowed areas on
the surface of the receiver, making even the shadow intersections look correct.

4.4. One light source, mutliple blockers, one receiver
 

This case also needs multiple passes. There is one difference though: the cumulative effect
of shadow intersections is incorrect, because the two blockers block the light of the same
light source.
Use the stencil-buffer to not draw in the screen area where there is already a shadow
drawn.
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