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Introduction 
 
During this session, I want to examine the benefits of a micro-programmable graphics 
architecture. I will consider the graphics pipeline and where hardware and software techniques 
can be applied. After looking at the pros and cons of hardwired hardware vs. CPU vs. micro-
coded coprocessors, I will discuss procedural vs. explicit descriptions. Finally, I hope to 
demonstrate some of the principles by showing examples on a specific micro-programmable 
graphics system; PlayStation®2. 
 
3D Graphics Pipeline 
 

 
Figure 1. The classic 3D graphics pipeline. 

 
Figure 1 shows a typical 3D graphics rendering pipeline. Notice the trend that has occurred 
over several years where more and more of this pipeline has been finding its way into special 
hardware. In the early days of CG, the display was memory mapped and the CPU wrote pixels 
directly into the frame buffer. In this case, the CPU was responsible for every step of the 
pipeline. Hardware implementations begun with the rasterization of pixels on the display and 
have gradually been rising up the pipeline with the latest hardware able to take geometrical 
descriptions in terms of vertices, normals and polygons and perform all the transformations, 
lighting, texturing and rasterization in hardware.  
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By its very nature, a hardware implementation of any section of the pipeline will be less flexible 
than its software counterpart. For example, most hardware rasterization is limited to a gouraud 
shading model and cannot be re-tasked to do a per-pixel phong for instance. The reward for 
this loss of flexibility is greater performance for a certain class of rendering operations.  
 
Micro-Programmability 
 
In this paper, I’m going to use the word micro-programmable to describe coprocessors which 
operate in parallel with the main system CPU which can have their own local programs and 
data.  
 
The key coprocessor features that I am highlighting are :- 
 
Local instruction memory 
Local data memory 
Parallel (non  blocking) operation with the CPU and other system components 
A direct connection to display rasterization 
 
I’m going to concentrate on the PlayStation®2 architecture which has hardwired rasterization 
and micro-programmable vector processors for transformation, lighting and rendering setup.  
 
Transition from CPU to graphics coprocessors 
 
In the vast majority of cases, the scene database and high level world description are best 
managed by a general purpose CPU. The data is often highly application specific and the 
algorithms and data sets too big and too complex to implement on hardware.  
 
However, a little lower down the pipeline, the data starts to become more manageable by 
hardware and the graphics operations start to become more constrained and consequently 
easier to implement in hardware or micro-program. Certainly transformation and lighting fall 
into this category. There are other procedures such as skinning, adaptive tessellation, level of 
detail, higher order surfaces and so on which may be too complex and too application specific 
for hardwired hardware implementations. It is in this area that a micro-programmed 
coprocessor is most useful. 
 
Pros and Cons of Micro-Programmability 
 
When compared to a fixed hardware implementation, micro-programmed hardware has the 
following pros and cons : 
 
Pros : (Micro-program vs. hardwired hardware) 
 
Flexibility and generality. Slight variations and parameterizations of an algorithm are easy. A 
wider set of needs can be addressed. 
 



Tailored (and optimized) to application and data set whereas hardwired hardware tends to 
force application functionality  to fit the available hardware. 
 
Multiple use. Micro-programmed hardware can be tasked with performing very different tasks 
by using a different set of microcode.  
 
Can reduce bus-bandwidth. Hardwired solutions typically require a fixed data format to be 
passed in. Often this is more verbose than a specific object or application requires. Microcode 
allows the data set to be passed to the hardware in a more “native” format. This typically 
reduces the amount of data passed across the bus from main memory to the graphics 
coprocessors.  
 
Non standard effects. e.g. non-photorealistic rendering, distortion, noise, vertex perturbation 
etc. 
 
Cons: (Micro-program vs. hardwired hardware) 
 
Usually slower. Typically, dedicated hardware can get better performance than microcoded 
hardware. However, this is not always the case. Its worth noting that certain combinations of 
graphics algorithms share intermediate calculations and data. In a hardwired solution it may be 
necessary to redundantly repeat these intermediate calculations whereas a microcode 
implementation may recognize these special cases and optimize appropriately. 
 
Performance Issues : Procedural Descriptions and Micro-programmability 
 
In games, performance is always important. There are never enough resources to go around. 
As previously mentioned, procedural descriptions are economic on memory usage. However, 
processing performance is dependent on both algorithm and architecture implementation. 
 
For example, a procedural algorithm may be so algorithmically complex that it will always be 
slower than using an explicit (polygonal) description.  
 
Assuming a procedural technique is to be used, then the following performance characteristics 
are likely: 
 
If the technique happens to be implemented directly in silicon in hard-wired hardware, it will 
almost certainly be the fastest implementation. 
 
In most cases, the technique won’t be hardwired into hardware and it will need to be 
programmed either on the CPU or on a microcoded coprocessor. In this case, assuming the 
same clock speed for CPU and coprocessor, the coprocessor will almost always be faster. 
This is because the coprocessor will have hardwired elements of common graphics routines. In 
addition, it is likely that the CPU can be undertaking other tasks in parallel with a coprocessor, 
therefore increasing the effective speed of the whole application. 
 



Swapping Microcode 
 
The breadth of hardwired hardware functionality is limited by the number of gates on the 
silicon. While this is ever increasing, it is not practical to layout every possible graphics 
algorithm in gates. Microcoded functionality is limited by microcode instruction space, but as 
with all programmable systems, this instruction space can be reused. In the case of 
PlayStation®2, it is possible to reload the entire microcode many times a frame allowing for a 
huge set of algorithms.  
 
Explicit vs. Procedural Content 
 
Lets consider the description of the objects and the world that a 3D graphics pipeline will be 
rendering. For the purposes of this session, I will split geometric/object descriptions into two 
categories ; procedural (implicit) and explicit (low level). 
 
In most cases, 3D hardware ultimately renders triangles from vertices, normals and textures. 
When creating the description of an object in a game, one approach is to describe that object 
explicitly in terms of a list of vertices, normals, texture UV co-ordinates and polygons. Lets call 
this “explicit”.  
 
A second approach is to abstract the description of the object to a higher level than the 
vertices and polygons that will ultimately be rendered. The low level vertices and polygons are 
still required, but they can be generated procedurally by an algorithm that takes its description 
of the world in a higher level form. Lets call this “procedural”. In a procedural description, some 
of the information of what an object looks like is transferred from the data set to the algorithm. 
 
There are various levels of procedural descriptions. The simplest types would be surface 
descriptions using mathematical techniques such as Bezier surfaces which can be described 
in terms of a few control points instead of many vertices and triangles. An extreme procedural 
example might be some complex algorithm for drawing a class of objects such as trees, plants 
or landscapes.  
 
Pros and cons of Procedural vs. Explicit 
 
On the positive side, parameterized or procedural descriptions can significantly reduce the 
data storage requirements. This is always important in games, but even more so on consoles 
where there is often a smaller amount of RAM available than on a typical PC. Not only does 
this reduction in data size help on memory usage, it also improves the transfer of data on the 
bus from main memory or CPU to the graphics unit. Bus bandwidth issues can often be a 
bottleneck in graphics architectures and so this element of procedural descriptions is 
important. 
 
On the negative side, some geometry is just not suitable for procedural description. At times, 
an explicit description is necessary to maintain the original artwork. In some cases, an explicit 
description is needed to maintain control of certain aspects of the model.  
 



One area where there is both a positive and a negative effect is in animating geometry. Some 
procedural descriptions naturally lend themselves to effective animation. For example, a 
subdivision surface will usually work well for an object that has a bending or creasing 
deformation applied. A counter example might be breaking or cutting a hole in a Bezier 
surface. This might be difficult to accomplish when compared to performing the same 
operation with a polygonal mesh. 
 
PlayStation®2 Graphics Architecture 
 
The figure shows the architecture of the PS2 hardware for graphics. The system is essentially 
split into 5 components. 
 

 
Figure 2. PlayStation®2 Graphics Architecture 

 
PS2 : CPU 
 
The CPU is a general purpose MIPS variant CPU with its own FPU, 128 bit SIMD integer 
multimedia extensions, ICACHE, DCACHE and a special on-chip “Scratch pad” memory of 
16K. 
 
PS2 : Vector Units 
 
The vector coprocessors are SIMD floating point units. They perform multiply/accumulate 
operations on 4 single precision floats simultaneously with single cycle throughput. In parallel 
with the FMAC operations, the vector units perform single float divide, integer and logic 
operations. 
 
PS2 : Vector Unit 0 (VU0) 
 
The VU0 has 4K of instruction RAM and 4 K of data RAM. 
 
This unit is closely coupled to the CPU and can be used as a MIPS coprocessor, allowing the 
CPU instruction stream to directly call vector unit instructions. 
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The VU0 can also be used as a stand-alone, parallel coprocessor by downloading microcode 
to the local instruction memory and data to its data memory and issuing execution instructions 
from the CPU. In this mode, the CPU can run in parallel with VU0 operations. 
 
PS2 : Vector Unit 1 (VU1) 
 
The VU1 has 16 K of instruction RAM and 16 K of data RAM. 
 
This unit is closely coupled to the Graphics Synthesizer and has a dedicated bus for sending 
primitive packet streams to the GS for rasterization. 
 
The VU1 only operates in stand-alone coprocessor mode and has no impact on CPU 
processing which takes place totally in parallel. Downloading of microcode, data and the 
issuing of execution commands to VU1 are all accomplished via the DMA Controller. 
 
PS2 : Graphics Synthesizer (GS) 
 
This unit is responsible for rasterizing an input stream of primitives. The GS has a dedicated 
4M of embedded (on-chip) DRAM for storing frame buffers, Z buffer and textures. This 
embedded DRAM makes the GS incredibly quick at both polygon setup and fill rate operations. 
The GS supports points (dots), triangles, strips, fans, lines and poly-line and decals (sprites). 
Fast DMA also allows for textures to be reloaded several times within a frame. 
 
PS2: DMA Controller (DMAC) 
 
The DMA controller is the arbiter of the main bus. It manages the data transfer between all 
processing elements in the system. In terms of the graphics pipeline, the DMAC is able to 
automatically feed the VU1 with data from main system DRAM with no CPU intervention 
allowing the VU1 to get maximum parallel operation.  
 
When the VU1 accepts data from the DMA, it has another parallel unit which can perform data 
unpacking and re-formatting operations so that the input stream is in the perfect format for VU1 
microcode operation. This unit also allows for VU1 data memory to be double buffered so that 
data can be loaded into the VU1 via DMA at the same time as the VU1 is processing data and 
sending primitives to the GS. 
 
 
Examples 
 
So much for the theory. How does it work in practice? I want to demonstrate some of the 
points that I have been making by showing some example applications running on 
PlayStation®2. 
 
Example: Higher Order Surfaces 
 



Some curved objects can be best described by surfaces rather than polygons 
The parameters describing the surface often require less data than the corresponding 
polygons that are rendered. Surface descriptions also allow for easier automatic level of detail. 
 
I will show two different types of surfaces ; Bezier and  Subdivision. 
 
Example: Bezier Surfaces on PS2 
 
The demo application shows around 10-16 M polygons/sec being drawn to render objects 
described by Bezier patches.  
 
The VU1 has a micro-program which creates, lights and renders triangle strips directly from 
Bezier blending matrices. The blending matrices can either be pre-calculated and sent to the 
VU1 or the VU1 can calculate them on the fly from control points. Because of the pipelined 
nature of the vector units, calculating the matrices on the fly does not exact a massive penalty 
on performance. 
 
By using Bezier surfaces, suitable geometry can be described using much less data. This 
reduces the memory storage in main RAM, lowers the system bus traffic of data from the CPU 
to the graphics coprocessors and also maintains a very high performance. The high 
performance is achieved because the microcode is able to create very efficient triangle strips 
thus sharing more vertices, consequently transforming and lighting less data. 
 
Demonstration written by Mark Breugelmans, Sony Computer Entertainment Europe. 
e-mail: Mark_Breugelmans@scee.net 
 
Example: Subdivision Surfaces on PS2 
 
The demonstration application shows the rendering of a non-modified Loop subdivision surface 
on PlayStation®2. [Refs 1,2,3,4] 
 
Subdivision surfaces offer a modeling paradigm which combines the advantages of polygon 
modeling (precise control, local detail and arbitrary topology) and patch modeling 
(smoothness). 
 
The CPU sends the VU1 the vertices, colors and texture co-ordinates and the VU1 performs 
the subdivision, calculating the normals if needed for lighting. The VU1 then efficiently renders 
the polygons resulting from subdivision. 
 
The implementation shown, which is not fully optimized, has 4 parallel lights plus ambient, 
texture and fogging. Even without full optimization, the renderer is exceeding 4 million 
polygons per second. 
 
As with other “surface” schemes, the amount of data required to describe the geometry is 
generally less than a polygon mesh and allows for level of detail to be controlled by the amount 
of subdivision taking place. 



 
Demonstration written by Os, Sony Computer Entertainment Europe (Cambridge) 
e-mail: os@scee.sony.co.uk  
 
Example: Terrain Rendering on PS2 
 
The demonstration application shows an interactive fly-through of a potentially infinite 
procedurally generated landscape. The terrain is calculated using noise functions as are all the 
textures used. 
 
In the demo, the CPU first calculates the view frustum and works out some view dependent 
sampling for the terrain that is within the view. Essentially this is a level of detail which is 
adaptive on a tile basis. The CPU is using a metric which tries to keep the size of rendered 
triangles roughly the same for both distant and close parts of the terrain. It also prevents non-
visible parts of the terrain from being calculated. 
 
The CPU then hands off the terrain sampling parameters to the VU0 and VU1 coprocessors 
which run several micro-programs to accelerate various calculations and ultimately perform the 
polygon lighting and rendering. 
 
The VU0 is used for fast generation of the terrain using noise functions. The VU1 is 
responsible for building highly efficient triangle strips in local coprocessor memory which are 
then lit and transformed. As the VU1 is constructing the triangle strips in an algorithmic 
fashion, it knows how best to share vertices which results in an effective saving of 46% less 
vertices compared to a simple polygon mesh. This reduces the amount of transform and 
lighting calculations keeping performance high. 
 
In this demo, the VU0 microcode has to be swapped during a frame because of the number 
and complexity of operations it performs.  
 
The terrain in this demonstration can be rendered with adequate performance remaining to 
add game play. If the landscape in this demo was stored as a polygon mesh, it would require 
huge amounts of memory and a complex streaming architecture. Instead, the procedural 
terrain takes a handful of parameters and about a 2M footprint. This frees up machine 
resources for the storage of other game models and environment which do not lend 
themselves to procedural generation. 
 
Demonstration written by Tyler Daniel, Sony Computer Entertainment America R+D 
e-mail: Tyler_Daniel@playstation.sony.com  
 
Example: Particle Rendering on PS2 
 
The demonstration application shows a non-standard rendering of a 3D model. In this case, 
the model (with approximately 40,000 triangles) is rendered only with dots which are 
themselves a particle simulation. 
 



Instead of rendering triangles, the microcode in the coprocessors renders dots. The VU0 and 
CPU calculate the motion of the dots using a particle simulation. The particles are emitted from 
the vertices of the original model along the vertex normals of the model. The effect looks 
somewhat like fire or smoke. The particles are then sent to the VU1 to be transformed and 
rendered. 
 
This is a good example of how special microcode can replace a standard triangle rendering to 
give a different appearance to in-game models. In this case, the model remains the same and 
the act of swapping the microcode determines whether it is rendered as triangles or as 
particles. 
 
Demonstration written by Stewart Sargaison, Sony Computer Entertainment America R+D 
e-mail: Stewart_Sargaison@playstation.sony.com  
 
Example: Normal Perturbation on PS2 
 
The demonstration application shows another non-standard rendering of a 3D model. In this 
case, the model (with approximately 40,000 triangles) is rendered with the vertices perturbed 
by a procedural amount along the normal at that vertex. This gives a kind of swirling effect. As 
with the previous example, the model is described in a standard way and by swapping in a 
different rendering microcode, this effect can be accomplished. 
 
An ‘invisible’ light is used in the scene. The VU1 calculates the cosine of the normal with the 
invisible light and uses this as the amount by which to extrude or perturb the vertex from its 
original position. The VU1 then continues with the “standard” rendering operations except that 
it combines the render using a blending operation with the previous frame. 
 
Due to the pipeline of the VU1, it is possible to completely hide the extra rendering operations 
for this demonstration which means that there is no performance impact for this effect vs. 
standard rendering. 
 
Demonstration written by Stewart Sargaison, Sony Computer Entertainment America R+D 
e-mail: Stewart_Sargaison@playstation.sony.com 
 
Example: Post processing effect on PS2 
 
The demonstration application shows a post-processing effect applied to the frame buffer after 
a first pass 3D rendering stage. In this case, the first stage render takes place to an off-screen 
buffer which is then applied as a texture onto a microcode generated mesh. The mesh is then 
rendered into the frame buffer with alpha blending while the mesh vertices are perturbed using 
a noise function. The final effect is a kind of under water like distortion.  
 
Demonstration written by Stewart Sargaison, Sony Computer Entertainment America R+D 
e-mail: Stewart_Sargaison@playstation.sony.com 
 



Example: Shadow Rendering using PS2 
 
This demonstration shows the rendering of shadows using a point light source and a blocker 
object which renders to a shadow texture map and then applies this shadow map to the 
receiving background objects. 
 
The operation is split into two parts. First, a CPU and VU0 microcode routine calculates the 
shadow texture map and framing of the blocker object which casts a shadow. Note that this 
geometry can be a simpler version of the actual blocker object. 
 
The second part is the rendering of the shadow onto the receiver geometry. Here, a special 
VU1 microcode is used which combines the standard rendering operations and the shadow 
calculations so that the vertices only have to be fetched once and many of the intermediate 
results of the transformations can be shared between the two calculations. This is a clear 
example of where a separate second pass of the geometry for casting the shadow would be 
much more expensive. 
 
Demonstration written by Gabor Nagy, Sony Computer Entertainment America R+D 
e-mail: Gabor_Nagy@playstation.sony.com 
 
Other potential uses 
 
Special microcode can be written for certain classes of in-game objects which lend themselves 
to a parametric or procedural description. Often, these descriptions embody more information 
about the way a class of objects should be drawn which allows for efficiency in both storage 
and rendering. Here are two examples that should work well: 
 
Trees & Plants 
 
A lot of excellent papers have been written about the procedural generation of plants. It should 
be possible to write a microcode renderer which would take a procedural description of a plant 
and render it directly – without CPU intervention. 
 
Roads 
 
Some in-game objects obey certain “rules” and therefore can be described in terms of those 
rules. One such example is a road surface in a racing game. These objects can be described 
in terms of splines, camber, bank, width, surface type etc. A special microcode could be written 
to take the procedural description and automatically tessellate a view dependent rendering of 
the road surface. This should be efficient both in memory use and in processing. 
 
Summary 
 
My aim in this session has been to demonstrate the benefits of a micro-programmable 
graphics architecture. Instead of a single, inflexible, monolithic set of rendering operations 
hard-coded in hardware, I show how microcode can allow for a multitude of different rendering 



techniques including many which are specific to the application and its data set. The main 
advantage of these techniques is a reduction in the memory and bus-bandwidth used to 
describe in-game models. The secondary advantage is to allow novel, non-standard rendering 
techniques to be implemented more efficiently. Finally, I hope to have shown that performance 
of a microcoded architecture is excellent. 
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