
© IJIGS/University of Wolverhampton/EUROSIS

TEACHING CONSOLE GAMES PROGRAMMING WITH THE SONY
PLAYSTATION2 LINUX KIT

Henry S Fortuna
School of Computing and Creative Technologies

University of Abertay Dundee
Bell Street, Dundee DD1 1HG,

Scotland, UK
E-mail: h.s.fortuna@abertay.ac.uk

KEYWORDS
Games, Console, Programming, PlayStation2.

ABSTRACT

In May 2002, Sony Computers Entertainment
Europe released the PlayStation2 Linux
Development Kit providing educational
establishments with a means for teaching native
code development on this current generation of
console. Games console programming is
fundamentally different from programming games
on PC based platforms and is a valuable skill to be
mastered by any graduate seeking employment as a
programmer in the Computer Games Industry. In
order to obtain optimal performance from a
console, detailed knowledge and understanding of
the system hardware is required. The PlayStation2
contains several processors which operate in
parallel, and both the programming and
synchronisation of these processors is essential.
Program code is developed for the PlayStation2
Linux Kit using a range of generic and proprietary
tools. The GNU C++ compiler is used to create
high level game code, an assembler and/or inline
assembly is used to create custom high-speed
routines, a Vector Command Line preprocessor is
used to develop low level code for the Vector Unit
processors and the Graphics Synthesizer is
configured to render to a television or monitor.
These techniques and tools are introduced to
students to provide them with a realistic insight
into modern console game development.

INTRODUCTION

The PlayStation2 Linux kit (Linuxplay Web Site,
2004) is added to a standard PlayStation2 (PS2)

transforming it into a Linux workstation which can
be used for many purposes including the
development of native console game code. The kit
consists of a hard disk drive, a keyboard and
mouse, an Ethernet network adapter, cables, Linux
operating system and development software.

The kit was originally released with two main
methods of code development for graphics/games
applications: an implementation of OpenGL called
PS2GL, and a low level development library called
libps2dev (Playstation2-linux Web Site, 2004).
PS2GL did not utilise any of the advanced
hardware within the PS2 and provided a
development experience very similar to using
OpenGL on a standard PC. Using PS2GL did not
reflect the development methods being used by
professional PS2 developers and this method was
not pursued by the author.

Development under libps2dev provided some
access to the console hardware including the vector
units (VUs). However, the major disadvantage of
libps2dev is that it did not provide access to the
Direct Memory Access Controller (DMAC) which
is a key component, central to providing high
performance from the PS2. Under libps2dev, the
function of the DMAC was emulated, leading to
non-optimal performance from the console.

In November 2002, shortly after the release of the
kit, the SPS2 Direct Access Development
Environment (Osman, 2002) was released. SPS2 is
a low level development library providing direct
access to the PS2 hardware and unlike the other
development libraries, it has been updated several
times since its initial release. A significant feature
of SPS2 is that it provides direct access to the
DMAC, thus allowing the programmer to utilise
the full power and performance of the PS2. SPS2



© IJIGS/University of Wolverhampton/EUROSIS

also provides a development infrastructure similar
to that of the professional development kit, with
code being developed under SPS2 only requiring
minor modification to run under the professional
development kit. It was for the reasons of similarity
of experience with the professional development
kit, and superior performance, that SPS2 was
adopted as the development environment/library
for games development courses at the University of
Abertay Dundee.

PS2 ARCHITECTURE

Figure 1 shows the main internal components and
data pathways that exist within the PS2. The main

“Emotion Engine”(EE) core is a MIPS IV custom
processor operating at 300MHz. A 32-bit floating-
point unit (FPU) is connected to the EE Core and
acts as a coprocessor. Two 128-bit vector
processing units are present, VU0 and VU1. VU1
contains 16k of program memory and 16k of data
memory and operates in Micro-mode,
independently from the main CPU core. VU1 is
connected directly to the graphics interface (GIF)
which is used to unpack data and send it directly to
the graphics synthesiser for rendering. VU1 is
mainly used for vertex transformation, lighting and
clipping. VU0 contains 4k of program memory and

4k of data memory and can be used in either
Micro- or Macro-mode. In Macro-mode, VU0 acts
as a second co-processor for the main CPU. In
micro-mode VU0 executes its own micro-program
independently from the main CPU and can be used
in this mode for physics and other intensive in-
game calculations. The vector units are connected
to the data bus via their associated vector unit
interface (VIF). The VIFs are intelligent
microcontrollers which interpret the data sent to
them using special instructions embedded in the
data called VIFCodes.

The Direct Memory Access Controller (DMAC) is
responsible for transferring data between main
memory and the various processors and scratchpad

memory. Correct utilisation of the DMAC is
fundamental to obtaining high performance from
the PS2. Data transfer is over a 128-bit bus which
operates at a maximum transfer speed of 2.4
Gbytes per second.

Three paths exist through the GIF to the graphics
synthesiser. Path 1 is from VU1 micro-memory,
Path 2 is from VIF1 and Path 3 is from the main
data bus. Although there is flexibility in the use of
each data path, the recommended function of the
data paths is as follows (Sony Computer
Entertainment Europe, 2001a). Path 3 is for

EE Core
VU0
(4k)

VU1
(16k)

I$
16k

D$
8k

SP
16k VIF0 VIF1

128-bit Data Bus

GIF GS

Path 1

Path 3

Path 2

DMAC
Main

Memory

FPU

Timer

32 128

64

Vsync/
Hsync

2.4Gb/sec

Figure 1



© IJIGS/University of Wolverhampton/EUROSIS

loading image data into texture memory within the
GS. Path 2 can also be used to upload texture data
and for the setting of configuration registers within
the GS. Path 2 transfers are convenient, in that they
provide inherent synchronisation between texture
data and vertex data. Path 1 is the main geometry
path for transferring transformed vertex data to the
GS for rendering.

A typical rendering process involves uploading
texture data from main memory to the GS via path
2/3 and untransformed vertex data to VU1 micro
memory via VIF1. A VU1 micro program
transforms, lights and clips the vertex data then
sends it over Path 1 to the GS for rendering. Many
of these operations are carried out in parallel and
are synchronized with the use of appropriate
VIFCodes embedded within the vertex and texture
data.

DEVELOPMENT PROCESS AND TOOLS

Several methods for games application
development are possible with the PS2 Linux kit,
with the arrangements adopted by the author being
illustrated in figure 2

The development station consists of a PlayStation2

Linux kit, Windows PC, two PS2 controllers, dual
input LCD monitor, keyboard, mouse, television
and peripheral connection box. The dual input
LCD monitor is used to display the video output
from either the PC or the PlayStation2. The single
keyboard and mouse are switchable between the
PC and the PS2 using an interconnection box and
suitable leads. Both the PC and the PS2 are
connected to the University Ethernet network and
communicate with each other via the TCP/IP and
Server Message Block protocols. Graphics output
from the PlayStation2 can be directed to the
television for prototyping games applications at the
correct resolution and size. This arrangement
significantly reduces the amount of equipment

University Ethernet Network

Windows PC Television

LCDMonitor
Keyboard

Mouse

Connection
Box

Control Pads

PlayStation2

Figure 2



© IJIGS/University of Wolverhampton/EUROSIS

needed per development station and maximises the
utilisation of the student laboratory.

Students are free to select a development method
that is comfortable to them, but an arrangement
found to be successful is as follows. The Linux file
system is made available to the PC via a Samba
server running on the PS2. Files on the PS2 can be
created and edited using a suitable text editor (such
as UltraEdit or Visual Studio) running on the PC.
From either a Telnet or SSH session from the PC
to the PS2, programs can be compiled and
executed on the PS2, with graphics output being
directed to either the LCD monitor or television.
Debug output from the program is sent via the
Telnet/SSH session to a console window on the
PC. Students store their project code on the main
University file servers making this arrangement a
robust, effective and secure development
environment.

Several tools are used in order to develop games
applications under PS2 Linux. Core game code is
written in either C or C++ and GNU C and C++
compilers are shipped with the kit. The vector units
are proprietary chips (Sony Computer
Entertainment Europe, 2001b) which are
programmed at assembly level. Both vector units
have two execution units (upper and lower) which
operate in parallel, leading to assembly code which
is written in two parallel streams. This assembly
code is compiled to native VU object code with a
VU assembler (ee-dvp-as) shipped with the kit.
The pairing and scheduling of VU assembly code is
relatively complex for students with limited
experience of assembly language, but a Vector
Command Line (VCL) preprocessor which is
shipped with the kit is available to help generate
VU code. VCL takes a more traditional single
stream of assembly language instructions and from
that generates the dual stream of VU assembly
code with correct scheduling, pairing and
optimisation of instructions. The output from VCL
is then compiled with ee-dvp-as to produce the
vector unit object code.

The operation of the VUs can be remotely
monitored and debugged using a visual debugger
(Osman, 2003) running on either a Windows or
Linux PC. A server program runs on the PS2 kit
monitoring the execution of the VU micro program

under control of the debugger client running on the
PC. Full control of the execution of the micro
program is obtained together with access to both
program and data memory. Using the debugger it is
possible to single step the execution of the VU
code and observe output on the television/monitor
on a frame-by-frame basis.

TEACHING METHODS

Students studying on the BSc Computer Games
Technology course gain access to the PlayStation2
Linux kits for the first time in their second year
where they study a full module in Console Game
Programming. The module introduces topics such
as the internal structure and organisation of a
games console, the structure and organisation of a
games program, and the tools necessary to create
and import media content for games. By the end of
this module students will understand how consoles
are structured and organised and the methods and
techniques that are necessary in order to program
consoles effectively

Students entering the third year have a solid
grounding in console architecture and
programming and it is from this background that
the PlayStation2 Linux kit is used to introduce the
design and construction of console based 3D
games engines. Students develop and use the
mathematical routines that are necessary for
implementing a 3D engine and generate code that
interacts directly with the 3D console hardware
such as the vector units. By the end of this module
students will have created a small prototype 3D
game engine and understand the structure,
organisation, development and use of modern 3D
games engines.

Students undertake a Group project in their third
year and an individual honours project in their
fourth and final year of study. The PlayStation2
Linux kit is available as a platform to undertake
these projects. It provides access to a modern
console for testing and evaluating algorithms,
techniques and ideas.

A further theme that the PlayStation2 Linux kit is
well suited to exposing is that of network
programming and gaming. The Playstation2 Linux



© IJIGS/University of Wolverhampton/EUROSIS

kit is supplied with a 10/100 Base-T Ethernet
interface network adaptor and a Linux operating
system with full network support. Under Linux, the
Berkeley Sockets API provides access to the
TCP/IP protocol suite that is the backbone of the
Internet. The PlayStation2 Linux kit can therefore
be used in the teaching of network theory and
practice and more specifically in the design and
implementation of network computer games. Using
the kit it is possible for students to design and
create network enabled computer games which
have global access through the Internet

CONCLUSIONS

This article has reviewed the internal structure and
organisation of the PlayStation2 Linux
development kit and has demonstrated how the kit
can be applied to teaching and learning on a wide
range of topics within Computer Games
Technology courses. In practice, the kit has been
found to be highly motivational for students and is
an invaluable tool for the in-context teaching of
Computer Games Technology.

REFERENCES

Linuxplay WebSite, 2004
http://linuxplay.com
“Information on the PlayStation2 Linux Kit.”

Osman S, 2002. “A Development Library for Linux
(for Playstations2)”
http://playstation2-linux.com/projects/sps2

Osman S, 2003. “Sauce's Visual VU Debugger”,
http://playstation2-linux.com/projects/sps2

Playstation2-linux Web Site, 2004
http://playstation2-linux.com/coding-on-
playstation2.php
“Console game development options for the
PlayStation2 Linux Kit.”

Sony Computer Entertainment Europe, 2001a. EE
Core User’s Manual, 5th Edition

Sony Computer Entertainment Europe, 2001b. VU
User’s Manual, 5th Edition.



© IJIGS/University of Wolverhampton/EUROSIS

TEACHING CONSOLE GAMES PROGRAMMING WITH THE SONY
PLAYSTATION2 LINUX KIT

Henry S Fortuna
School of Computing and Creative Technologies

University of Abertay Dundee
Bell Street, Dundee DD1 1HG,

Scotland, UK
E-mail: h.s.fortuna@abertay.ac.uk

KEYWORDS
Console, Programming, PlayStation2.

ABSTRACT

In May 2002, Sony Computers Entertainment Europe released the PlayStation2 Linux Development Kit
providing educational establishments with a means for teaching native code development on this current
generation of console. Games console programming is fundamentally different from programming games on
PC based platforms and is a valuable skill to be mastered by any graduate seeking employment as a
programmer in the Computer Games Industry. In order to obtain optimal performance from a console, detailed
knowledge and understanding of the system hardware is required. The PlayStation2 contains several
processors which operate in parallel, and both the programming and synchronisation of these processors is
essential. Program code is developed for the PlayStation2 Linux Kit using a range of generic and proprietary
tools. The GNU C++ compiler is used to create high level game code, an assembler and/or inline assembly is
used to create custom high-speed routines, a Vector Command Line preprocessor is used to develop low level
code for the Vector Unit processors and the Graphics Synthesiser is configured to render to a television or
monitor. These techniques and tools are introduced to students to provide them with a realistic insight into
modern console game development.

BIOGRAPHY

Henry Fortuna has a 1st Class Honours Degree in Electrical and Electronic
Engineering and a PhD in Solid State Semiconductor Physics. He is a member
of the Institution of Electrical Engineers and a Chartered Engineer. He currently
teaches on both the BSc and MSc courses in Computer Games Technology at
The University of Abertay Dundee. His teaching and development interests are
mainly associated with console game programming and DirectX graphics
programming. He is actively involved in the PlaySation2 Linux development
community and has published tutorials which are shipped with the SPS2
PlayStation2 development environment. He currently maintains a web site
(www.hsfortuna.pwp.blueyonder.co.uk) which presents information and
tutorials pertinent to games and graphics programming using the PlayStation2
Linux kit.


	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6

